
Big Data Analytics: Why Sharing Scans Is Not Enough
Reactive and Proactive Sharing Across Concurrent Analytical Queries

Iraklis Psaroudakis, Manos Athanassoulis, Matthaios Olma, and Anastasia Ailamaki

Sharing and parallelism: friends or foes?

Serialization pointSerialization point

Optimizing for Latency and Throughput

50% of analytical applications will have 100s-

1000s of concurrent clients by 2015*

Efficient Sharing in presence of Parallelism

�Decouple producer from forwarding

Sharing only scans misses out on performance

improvement by a factor of 3.5x

Sharing Efficiency vs. Parallelism

⋈⋈

Σ Σ

push results

Σ

Machine: 2x8-core Xeon, 64 GB RAM. Storage manager: Shore-

MT+Qpipe+CJOIN. Workload: Star-schema benchmark

256 concurrent SSB Q3.2 queries

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256

R
e

sp
o

n
se

 T
im

e
 (

s)

of Concurrent Queries

No Sharing

Scan Sharing

Full Sharing
2x

3.5x

⋈⋈

Σ Σ Σ

⋈⋈ ⋈⋈

Optimize for Latency

�Opportunistically share common results

�Minimize sharing cost

0

5

10

15

20

25

30

35

1 128 256 512 1024 3750

R
e

sp
o

n
se

 t
im

e
 (

s)

of possible different plans

Re-active

Pro-active

Ideal

0

0.5

1

1.5

2

1 2 4 8 16 32 64

S
p

e
e

d
u

p

of Concurrent Queries

1 core Push 1 core Ideal

8 cores Push 8 cores Ideal

TPC-H Q1 (common)

Q1
Q2

SELECT * FROM Α, Β

WHERE Α.c1 = Β.c1

AND σ(A) AND σ(B)

SELECT * FROM Α, Β

WHERE Α.c1 = Β.c1

AND σ’(A) AND σ’(B)

B columns 01A columns

⋈⋈

B columns 01A columns 11
+ bitwise

AND

σ A σ

Tuple

+ bitmap

B

Reactive Sharing (push)

Proactive Sharing

Optimize for Throughput

�Shared operators built up to expect a

high number of concurrent queries

0%

10%

20%

30%

40%

50%
Today in 3 years

*High-Performance Data Warehousing, P. Russom, 2012

⋈⋈

ΣΣ Σ

Reactive Sharing (pull)

Core Core

Core Core

Core

Core

Core

Core Core

Core Core

Core Core

Core Core

Sharing only scans exploits 50% of

potential improvement ����

 Concurrency is increasing

#cores and #sockets follow Moore’s law

Proactive with Reactive

�Collapses common sub-plans

through shared operators

�Collapses the bits of

common sub-plans

�Eliminates unnecessary

book-keeping overhead

Producer and consumers

move independently

Random

