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Sharing and parallelism: friends or foes?

Serialization pointSerialization point

Optimizing for Latency and Throughput

50% of analytical applications will have 100s-

1000s of concurrent clients by 2015*

Efficient Sharing in presence of Parallelism

�Decouple producer from forwarding

Sharing only scans misses out on performance 

improvement by a factor of 3.5x

Sharing Efficiency vs. Parallelism 
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Machine: 2x8-core Xeon, 64 GB RAM. Storage manager: Shore-

MT+Qpipe+CJOIN. Workload: Star-schema benchmark

256 concurrent SSB Q3.2 queries
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Optimize for Latency

�Opportunistically share common results

�Minimize sharing cost
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# of Concurrent Queries

1 core Push 1 core Ideal

8 cores Push 8 cores Ideal

TPC-H Q1 (common)

Q1
Q2

SELECT * FROM Α, Β

WHERE Α.c1 = Β.c1

AND σ(A) AND σ(B)

SELECT * FROM Α, Β

WHERE Α.c1 = Β.c1

AND σ’(A) AND σ’(B)

B columns 01A columns
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Reactive Sharing (push)

Proactive Sharing

Optimize for Throughput

�Shared operators built up to expect a 

high number of concurrent queries
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*High-Performance Data Warehousing, P. Russom, 2012
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Reactive Sharing (pull)
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Sharing only scans exploits 50% of 

potential improvement ����

 Concurrency is increasing

#cores  and #sockets follow Moore’s law

Proactive with Reactive

�Collapses common sub-plans 

through shared operators

�Collapses the bits of 

common sub-plans

�Eliminates unnecessary 

book-keeping overhead 

Producer and consumers 

move independently
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